UNIVERSITA DEGLI STUDI DI MILANO

Identifying risk factors and predicting cancer risk: past,

present and future in a personal overview

Valeria Edefonti, Torino, CPO, 2024



““““ Outline of the presentation

- Past: tools of a dedicated epidemiologist

« Single exposures and cancer risk
« Standard approaches
« Nonlinearity in main effects and cancer risk
« Bidimensional exposures and cancer risk: nonadditivity and nonlinearity
« Multi-dimensional exposures and cancer risk: dietary patterns
« Residual confounding

 Future: machine learning in the INDACO project

* Nonlinearity

« Nonadditivity

« In the relation between (potentially complex) dietary exposures, potential
confounders, and cancer risk

 Present: machine learning for biomedical data:

« Comparison with statistics: two possible continua of models
« Challanges and ethical issues

©)
Z
x|
~
S
=
[
a
2
| s
w
=
Q
=
[
~
=
7
-4
&
>
Z
-




““““ Single exposures and cancer risk: standard approaches

Table 2. Descriptive statistics on raw values of vitamin E FULL PAPER
intake (mc? per day) across studies and in all the studies
combined (International Head and Neck Cancer
Epidemiology (INHANCE) consortium)
Study name 20% Median Mean 80%
Boston 5.37 7.91 2.00 11.58
Buffalo 4.47 6.90 7.78 10.45 Keywords: head and neck cancer; INHANCE; laryngeal cancer; oral and pharyngeal cancer; vitamin E
Italy Multicenter 10.16 14.08 15.17 19.31
Japan (2001-2005 6.08 7.42 7.77 9.26 H H H
pan ( ) Vitamin E intake from natural sources and
Los Angeles 4.46 6.50 7.51 9.42 R .
Y RN ses | 1198 1276 161 head and neck cancer risk: a pooled analysis
. .
Mskce 5.05 7.22 8.84 | 11.34 in the International Head and Neck Cancer
North Carolina (2002-2006) 4.95 7.29 8.04 10.64 E id mi I n rti m
Switzerland 9.73 12.90 13.49 16.84 p e o ogy conso u
US Multicenter 3.43 4.60 4.88 6.21 V Edefonti*!, M Hashibe?, M Parpinel3, M Ferraroni’, F Turati®, D Serraino®, K Matsuo®, A F Olshan’,
- . J P Zevallos?, D M Winn?, K Moysichm, Z-F Zhang”, H Morgenstern12, F Levi'®, K Kelseym, M McClean'®,
All studies combined 5.37 8.30 9.73 13.48 C Bosetti'®, S Schantz'’, G-P Yu'®, P Boffetta'?, S-C Chuangzo, Y-C A Lee?', C La Vecchia' and A Decarli'*
CZ> Abbreviation: MSKCC = Memorial Sloan Kettering Cancer Center.
<
= Table 3. Odds ratios (ORs)® of oral and pharyngeal combined and Ia(?/ngeal cancers and corresponding confidence intervals (95%
A Cls) on vitamin E intake quintile categories (International Head and Neck Cancer Epidemiology (INHANCE) consortium)
8 Oral and Laryngeal
& pharyngeal cases | Controls OR (95% Cl)° Pgtudies” cases Controls OR (95% CI)° Ptudies”
= | Quintile 976 1479 1 (Reference) 0.011 315 1479 1 (Reference) 0.464
Q
= Il Quintile 788 1832 0.79 (0.69-0.90) 280 1832 0.94 (0.76-1.16)
—
Tl Il Quintile 704 1944 0.65 (0.56-0.74) 248 1944 0.75 (0.60-0.93)
z IV Quintile 707 1922 0.64 (0.55-0.74) 298 1922 0.93 (0.75-1.14)
; V Quintile 719 1819 0.59 (0.49-0.71) 261 1819 0.67 (0.54-0.83)
4
= Ptor linear trend <0.001 <0.001
Estimated from multiple logistic regression models adjusted for age, sex, education, race/ethnicity, study centre, cigarette smoking status, cigarette intensity, cigarette duration, cigar smoking
status, pipe smoking status, alcohol drinking intensity and an interaction term between cigarette intensity and alcohol drinking intensity.
BFor the oral and pharyngeal cancer, heterogeneity between studies was detected (P<0.1) and we reported the mixed-effects estimates derived from the corresponding generalised linear
mixed model; for laryngeal cancer, there was no appreciable heterogeneity between studies and we reported the fixed-effects estimates.
P for heterogeneity between studies.
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Single exposures and cancer risk: nonlinearities

Table 2 Distribution of 454 endometrial cancer cases and 908 controls,
and corresponding odds ratio (OR) with 95% confidence intervals (Cls)?,
according to body mass index (BMI) at diagnosis and at different ages,” ltaly,

1992-2006
Cases Controls
No. (%) No. (%) OR (95% CI)

Height (cm)

<160 152 (335) 258 (285) 1€

160164 148 (32.6) 280 (31.0) 090 (0.66-1.21)

> 165 154 (339) 366 (405) 071 (0.53-0.95)
% for trend (P-value) 539 (P=0.02)
Weight (kg)

<64 109 (240) 355 (39.) 1€

64-74 145 (31.9) 311 (343) 151 (1.10-2.06)

>75 200 (44.1) 242 (267) 271 (1.99-370)
i for trend (P-value) 40.17 (P<0.01)
Body mass index (kgm™%)

<20 I 24 58 (64) 056 (027-1.15)

20 to <25 115 (25.3) 355 (39.3) 1€

25to <30 160 (352) 351 (388) 14l (1.05-1.90)

>30 168 (370) 140 (I155) 408 (290-5.74)
% for trend (P-value) 6795 (P<0.01I)
BMI (kgm™2) 5-Unit increase 1.89 (1.65-2.17)
Perceived body size at age |2 years

Thinner than peers 146 (32.3) 351 (39.1) 1€

Same than peers 173 (383) 341 (380) 1.12 (0.85—1.94)

Heavier than peers 133 (294) 206 (229) 145 (1.06—1.98)
* trend (P-value) 5.19 (P=002)

Table 3 Distribution of 454 endometrial cancer cases and 908 controls,
and corresponding odds ratio (OR) with 95% confidence intervals (Cls),*
according to measures of fat distribution,” Italy, 19922006

Cases Controls

No. (%) No. No. OR (95% CI)

Waist circumference (cm)

<84 79  (257) 221 (372) I©

84-95 101 (329) 226 (38.) 1.22 (0.83-1.79)

=96 127 (414) 147 (248) 268 (1. 78-4.03)
¥ for trend (P-value) 2251 (P<0.0l)
Hip circumference (cm)

<100 87 (284) 218 (368) 1€

100 to108 96  (314) 204 (345) 1.35 (0.92-1.98)

>109 123 (402) 170 (287) 249 (1.66-3.72)
¥ for trend (P-value) 1899 (P<0.0l)
Waist-to-hip ratio

<0.833 71 (233) 224 (378) 1€

0.833 to <0.890 129 (422) 177 (299) 2.10 (1.43-3.09)

>0.890 106  (34.6) 191 (32.3) 1.33 (0.89-1.97)
¥ for trend (P-value) 1.38 (P=0.24)

British Journal of Cancer (2011) 104, 12071213
© 201 | Cancer Research UK Al rights reserved 0007 —0920/1 |

www.bjcancer.com

Anthropometric measures at different ages and

endometrial cancer risk

L Dal Maso™"2, A Tavani, A Zucchetto', M Montella®, M Ferraroni?, E Negri3,j Polesel', A Decarli?,

R Talamini', C La Vecchia??® and S Franceschi’®
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Figure | Estimates of odds ratios and 95% confidence intervals of

endometrial cancer by body mass index at diagnosis (A) and waist-to-hip
ratio (B), using cubic regression splines. ltaly, 1992-2006 (Odds ratios from
regression equations include terms for age, study centre, year of interview,
education, smoking status, age at menarche, age at menopause, oral
contraceptives use, parity, and hormone replacement therapy use. Curves
are shown for best-fitting cubic spline regression models according to
Akaike Information Criterion. Dashed lines represent 95% confidence
intervals. Ranges represent the distribution of variables among controls
from 10th to 90th percentile). Reference categories were body mass
index = 23 and waist-to-hip ratio =0.79.



||“““ Bidimensional exposures and cancer risk: nonadditivity

- - -
Table 3. ORs of HCC and Corresponding 95% Cls According to Family History of Liver Cancer in First-Degree Relatives* Famlly Hlstory Of I_lver ca ncer and Hepatﬂce“ular
Model 1 Model 2 Model 3

Cases/Controls ORY (95% CI) OR: (95% CI) OR§ (95% Cl) c a rci n om a

Number of first-degree relatives with liver cancer

Al sl T N / N Federica Turati," Valeria Edefonti,” Renato Talamini,> Monica Ferraroni,” Matteo Malvezzi,"**
. |21 25/19 264 (1.39-5.02) 3.04 (157:591) 238 (1.01-5.58) Francesca Bravi,"* Silvia Franceschi,” Maurizio Montella,® Jerry Polesel,® Antonella Zucchetto,’
ales
0 166/280 1l 1l 1l Carlo La Vecchia,"*” Eva Negri,1 and Adriano Decarli®*
>1 17/12 219 (0.99-4.81) 2,68 (1.16-6.18) 321 (1.13-9.10)
Females
0 38/132 il iL il
>1 8/7 3.79 (1.25-11.46) 3.69 (1.16-11.72) 1.11 (021-5.78) 20:4
Type of affected relative >
No affected relatives] 204/412 1l 1 1l vt a9
Parents 17/8 4,86 (1.99-11.87) 5.58 (2.23-14.00) 6.08 (1.99-18.62) 80 y (21 SENNN..)
Siblings 9/11 1.38 (0.55-3.50) 1.60 (0.62-4.18) 0.69 (0.20-2.33) ' g
Age of youngest affected relative” |~ ; = =0
No affected relatives 204/412 1l il i 60 '
o <60 10/11 2.29 (0.93-5.69) 2.72 (1.08-6.90) 1,58 (0.46-5.40) | ) 152:44 s=1
Z >60 9/8 212 (0.77-5.81) 219 (0.79-6.11) 218 (0.62-7.72) a0 + - 5:15
] Sex of the affected relative** OR ’ 2.94
S No affected relatives 204/412 1l 1 1l > . (o;s'l;-‘g._z;; =
= Male 16/10 3.26 (1.41-7.54) 328 (1.39-7.71) 2.29 (0.80-6.58) 20 - “52:368 s
& Female 9/9 1.41 (0.86-2.39) 1.67 (1.00-2.78) 1,59 (0.80-3.14) | / =
% Family history of liver cancer using FHscore'" /-
= Minimal-isk 204/412 1l 1! 1l 0= ) / o Number of first-
2 Low-/intermediate-risk 12/10 1.83 (0.75-4.47) 1.89 (0.76-4.72) 1.42 (0.43-4.72) No———o degree relatives
T High-risk 13/9 3.82 (1.56-9.36) 491 (1.95-12.33) 3.87 (1.20-12.55) Yes o with liver cancer
E P value for trend <0.01 <0.01 0.02 HBsAg and/or anti-HCV positivity
Tl *Italy, 1999-2002.
Z TEst\'mated.from uncondition.al multiple Iog.'\sti.c regression mpde\s gdjusted for age, sex, and center. F|g 1. Number of cases and controls, ORs* and 95% Cls of hepa_
o tFurther adjusted for education, alcohol drinking, and smoking habits. t ” | g d h g h iy d f | h
> §Further adjusted for HBsAg andor anti-HCV.positiviy ocellular carcinoma accoraing to chronic epatltls an amily |story
= 'Reference category of liver cancer, measured by the standard method. Italy, 1999-2002.

90ne subject reported both a parent and a sibling affected by liver cancer. * . A . . _
#The sum does not add to the total because of some missing values on age at liver cancer diagnosis in first-degree relatives. AdJUStEd fOI' age’ Sex, Center’ educatlon’ alCOhOl drmkmg’ and Sm0k

**0ne subject had the mother and a brother affected by liver cancer mg habits.
There were two missing values for the FHscore.




““““ Bidimensional nonlinear exposures and cancer risk
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g , i NS 5 £ 3 Joint effects of intensity and duration of cigarette smoking on the risk of
© . .
2, = \ . ? head and neck cancer: A bivariate spline model approach
A 2 5
SN § S Gioia Di Credico™”, Valeria Edefonti®*, Jerry Polesel’, Francesco Pauli’, Nicola Torelli®,
~—_ Diego Serraino‘vj, Eva Negri®, Daniele Luce’, Isabelle Stucker?, Keitaro Matsuo”, Paul Brennan',
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©Odds Ratio (log scale) 0 0 - 2 30 . Erich M. Sturgis®”, Guojun Li*", Eleonora Fabianova®, Jolanda Lissowska®, Dana Mates®,
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Intensity (cigarettes/day)

Peter Rudnai®, Oxana Shangina®”, Beata Swiatkowska®", Kirsten Moysich*’, Zuo-Feng Zhang®”,
Hal Morgenstern’, Fabio Levi”’, Elaine Smith®, Philip Lazarus®, Cristina Bosetti*",

Werner Garavello™, Karl Kelsey"", Michael McClean™, Heribert Ramroth™, Chu Chen™,
B. Laryngeal cancer Stephen M. Schwartz®, Thomas L. Vaughan®, Tongzhang Zheng"?, Gwenn Menvielle™,

@) . Stefania Boccia”"?, Gabriella Cadoni®*", Richard B. Hayes"¢, Mark Purdue®®, Maura Gillison"",
5 50 50 © Stimson Schantz”, Guo-Pei Yu”, Hermann Brenner”*"""™ Gypsyamber D'Souza™,
= 5 20 Iiii: ~ 2 Neil D. Gross®, SI]lu-Chun Chuanghp, Paolo Boffetta®!, Mia Hashibe", Yuan-Chin Amy Lee®™,
= = ‘ ot d
S S ",,,0‘0 “‘ ° Luigino Dal Maso
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Q [=2]
= S 5 s ABSTRACT
(=) = z
=) g ™~ g 81
;r;; 2 2 2 EN Objectives: This study aimed at re-evaluating the strength and shape of the dose-response relationship between
= 81 1 é the combined (or joint) effect of intensity and duration of cigarette smoking and the risk of head and neck cancer
5 < = Q (HNC). We explored this issue considering bivariate spline models, where smoking intensity and duration were
‘S — e treated as interacting continuous exposures.
Zi 50 _— \\\ 40 Materials and Methods: We pooled individual-level data from 33 case-control studies (18,260 HNC cases and
= 40 — ~—_ 30 g 29,844 controls) participating in the International Head and Neck Cancer Epidemiology (INHANCE) consortium.
2 2, 30 20 5\6'&\5\ In bivariate regression spline models, exposures to cigarette smoking intensity and duration (compared with
= "90% 20 o N never smokers) were modeled as a linear piecewise function within a logistic regression also including potential
% @@Q@) 10 10 o ©® o confounders. We jointly estimated the optimal knot locations and regression parameters within the Bayesian
e framework

=] N :

9?2: Ra,“?z(zgj;al(e))s 10 <10 @10t0 <20 .020 1o <50 @250 0 10 20 30 40 Results: For oral-cavity/pharyngeal (OCP) cancers, an odds ratio (OR) > 5 was reached after 30 years in current

Intensity (cigarettes/day) smokers of ~20 or more cigarettes/day. Patterns of OCP cancer risk in current smokers differed across strata of
Fig. 2. Odds ratios™® of oral and pharyngeal cancer and laryngeal cancer in current smokers, for the joint effect of intensity (cigarettes/day) and duration alcohol intensity. For laryngeal cancer, ORs > 20 were found for current smokers of =20 cigarettes/day for
(years) of cigarette smoking estimated through bivariate spline models. INHANCE consortium. “Fitted models included adjustment for age, sex, race, study, =30 years. In former smokers who quit =10 years ago, the ORs were approximately halved for OCP cancers,
education, drinking status, drinking intensity, and drinking duration. The reference category was defined as “Never smokers”. POn the grid, black thicker lines and ~1/3 for laryngeal cancer, as compared to the same levels of intensity and duration in current smokers.
represent knot locations: 16 cigarettes/day and 33 years of duration for oral and pharyngeal cancer and 25 cigarettes/day and 30 years of duration for laryngeal Conclusion: Referring to bivariate spline models, this study better quantified the joint effect of intensity and
cancer, respectively. Dark grey lines in contour plots (right) indicate iso-risk curves at defined risk levels. ’

duration of cigarette smoking on HNC risk, further stressing the need of smoking cessation policies.




||“““ Multi-dimensional exposures and cancer risk: dietary
patterns

« Free-living individuals eat meals consisting of a variety of foods
with complex combinations of interacting nutrients

- Dietary patterns are one or more combined variables

summarizing multiple interacting dietary components and
thus capturing the cumulative exposure to different dietary
components

- Dietary patterns may have stronger effects on

health/disease risk than any single component
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“l“‘ Multi-dimensional exposures and cancer risk: dietary
| patterns/2

‘IllIllllIIIIllIllIllIlIllIIIIllIlllllllllllllllllllllllll..
a
n

- a priori approach: dietary patterns are indexes built byE
researchers and based on known favourable/adversei
effects of various dietary constituents .

- examples: Mediterranean diet index, Alternate HealthyE
Eating Index, Diversity scores

¢ EEEEEEEEEEEEEEEERN
EEn

. 'IIIlIlllllllIlIIIIIIlIllIllllllIIIIIIIIIIIIIIIIIIIIIIIIIII:
L
. » a posteriori approach: dietary patterns identified using
dietary pattern N & data driven statistical methods 1
approach - -~
o examples: Principal Component Analysis, Factor
P Analysis, Cluster Analysis
 _

- reduced rank regression (RRR): dietary patterns identified
using both existing knowledge and statistical methods
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““““ Multi-dimensional exposures and cancer risk: dietary
patterns/3

« Compared to one-dimensional a priori DPs, a posteriori DPs
describe actual dietary behavior

« A continuous score is assighed to each subject representing

his/her cumulative exposure on one or more profiles that we
called patterns

« The statistical analysis of the associetion between dietary
patterns and cancer risk works like if they were single

nutrients
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H“H Multi-dimensional exposures and cancer risk: dietary

;?\gllgsfs Factor loading matrix and explained variances for the four major dietary patterns identified by factor Nutrient Dietary Patterns and Gastric Cancer Risk in Italy
— Animal producs Vitamins and fiber VURA Starchich Paola Bertuccio,'? Valeria Edefonti,> Francesca Bravi,“> Monica Ferraroni,® Claudio Pelucchi,’
Animal protein 0.80 0.10 041 023 Eva Negri,1 Adriano Decarli,** and Carlo La Vecchia'?
Vegetable protein 0.15 0.39 0.29 0.80
Cholesterol 0.72 0.07 041 030
Saturated fatty acids 0.56 0.15 0.50 041
Monounsaturated fatty acids 0.20 0.29 0.72 0.8
Linoleic acid 0.9 0.16 071 033
glglolemclaﬂd ted s acid gig 86; ggg 8(3)3 Table 3. OR of gastric cancer and corresponding 95% Cls on quartiles of factor scores from a PCFA
er polyunsaturated fatty acids . -0. i 0.
ggﬁk carbohydrates 8%% g?? 8[2)% 811357; Dietary patten Quartile category, OR (95% C1) Prend’
Sodium 041 0.06 0.16 0.80 +
Caldum 065 034 00 028 1 i I i
pasdum o he 0 e Animal products 1 108 (064150 147090240 213 (136340) 0003
) ! ' : ' ' Vitamins and fiber 1 084 (0.53-1.32 1.00 (0.64-1.56) 0.60 (0.37-0.99) 0.0861
Iron 042 048 039 037
= Zinc 0.63 029 045 047 VUFA 1 0.84 (0.53-1.34) 089 (0.56-142) 089 (0.56-142) 07325
§ Thiamin (vitamin B1) 053 051 030 045 Starch-rich 1 137 (083-2.25) 137 (082-228) 167 (L01-277) 0.0463
— Riboflavin (vitamin B2) 0.76 047 010 0.26
a Vitamin B 0.53 058 041 029 - Bt isi i it ; inquennia of period of inervi '
= Larmin b b : : NOTE: Estimates from a logistic regression model conditioned on age and sex and adjusted for quinquennia of period of interview, education, body mass
5 I{?i;acli rflolate 8;12 gg; 8% 8%? index, tobacco smoking, and family history of gastric cancer. Results refer to the composite model including all the four factors simultaneously.
2 Fehi(o 012 085 013 01 il for e e
Q Retinol 047 0.08 003 0.00 EIETENCe category
a p-Carotene equivalents 0.04 0.67 0.20 0.02
= Lycopene -0.05 026 049 032
Z Vitamin D 0.54 0.04 0.54 -023
2 Vitamin E 0.08 0.53 0.74 0.2
% Total fiber (Englyst) 0.06 0.85 0.15 031
Proportion of explained variances (%) 21.67 2030 18.02 15.10
Cumulative explained variances (%) 2167 4197 5999 75.09

NOTE: Estimates from a PCFA done on 28 nutrients. Loadings (.63 are shown in boldface.




““““ Multi-dimensional exposures and cancer risk: dietary
patterns/5

 There is emerging evidence that DPs and disease may have
nonlinear relations

 Improper specification of models due to

erroneous/incomplete exposure characterization or
assumptions can lead to masked or spurious associations

and biased estimates
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||“““ Residual confounding

- Dense correlations between dietary components and with
confounding factors can make it difficult to ascertain the most

relevant dietary exposures and to address residual confounding

« Even when confounders are appropriately specified in models,
residual confounding can remain if unspecified

nonadditivity/nonlinearity is present
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““““ Machine learning: the promise

« «Machine learning approaches problems as a doctor progressing
through residency might: by learning rules from data. Starting with

patient-level observations, algorithms sift through vast numbers of

variables, looking for combinations that reliably predict outcomes

« In one sense, this process is similar to that of traditional regression
models: there is an outcome, covariates, and a statistical function
linking the two, but where machine learning shines is in

handling enormous numbers of predictors and combining
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them in nonlinear and highly interactive ways» (N Engl J Med
2016; 375: 1216-1219)




““““ Machine learning: the promise/2

 Machine learning may be used in nutritional epidemiology to

explore:

- more complex
« numerous dietary variables in models

e and/or

« nonlinear
« nonadditive relations
- between diet, other confounders, and cancer risk
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PRIN 2022 - INDACO: objectives

Explore nonlinearity and nonadditivity of dietary patterns -> cancer
risk relation by developing novel machine learning (ML) and
statistical approaches

Evaluate the identified cancer risk prediction/classification models

with
« previously collected database of Swiss case-control studies on diet and cancer

« newly collected database of middle-aged, healthy university employees from
Milan and Udine

Explore ML approaches for image-based dietary assessment
Transfer results from ML US-based image classification to a newly

collected pilot study of Italian food images and recipes



mmm PRIN 2022 - INDACO: graphical overview

I ncorporating Network of INTERNATIONAL (SWISS) ITALIAN
ITALIAN case- CANCER RISK CANCER RISK
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TRAINING VALIDATION AND PREDICTION
D ietary patterns
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= Learning
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““““ Machine learning for biomedical data

 Machine learning is a subfield of artificial intelligence where
profiles are derived from data with little human input

 This contrasts with statistical techniques that rely more on

human knowledge and emphasize a theoretical approach to

uncertainty
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Nm“ Statistics and machine learning

A Statistical Model

Statisticians, clinicians, ,,";f‘s'{“,'.'%', Age Sex Height
epidemiologists

L ENED D
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for prediction

Prespecified analysis strategy

Weight

Hands-on selection of measurements or features

Curation of transformation or standardization methods

Blood
pressure

Risk prediction

(e.g., risk of diabetes
and other coexisting
conditions)

Conclusions are
reproducible, auditable,
and verifiable -~

é Expert
@ judgment
ol ¥

Stable process

Q ——
N
Harder to scale to very S

large, multimodal, or
high-dimensional data sets F,

Automated search and extraction of arbitrary, complex,
task-oriented features to develop prediction algorithm

Risk prediction

(e.g., risk of diabetes

and other coexisting
conditions)

& -

—
‘ Can handle very large, [

P
o Automated
P
multimodal, or high- &?J
dimensional data sets et
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Statistics and machine learning/2

Table 1. Similarities and Differences between Artificial Intelligence and Conventional Statistics.

Feature

Prior hypotheses

Techniques (examples)

Stability (end-to-end)

Applications

Purpose

Reproducibility
Barriers
Interpretability

Equity

Artificial Intelligence Methods

Agnostic or very general

Random forests, neural networks, XGBoost

Analyses are more prone to instability and variability
as a result of application domains (e.g., multimod-
al data integration) and user choices in algorithm
specification (e.g., architecture in deep learning)

Analysis of images, outputs from monitors, massive
data sets (e.g., electronic health records, natural
language processing)

Pattern discovery; automatic feature representation;
feature reduction to a smaller, more manageable
set; prediction models

Often internal (i.e., performed with original data set);
cross-validation or split samples

Increasingly, use of proprietary algorithms not avail-
able to other researchers; lack of clarity in reporting

Often black-box; automatic algorithmic feature engi-
neering introduces opaqueness

Data-driven feature learning susceptible to biases pres-
ent in data, compounding health inequities

Conventional Statistical Methods

Specific; often categorized as primary, secondary, and
exploratory

Parametric and nonparametric comparisons between
groups; regression and survival models with linear
predictors

Stable analyses that follow prespecification of a sta-
tistical analysis plan with minimal available user-
defined choices in model specification

Data with a smaller number of predictors, tabular
data, randomized trials

Statistical inference and testing of specific factors for
departure from a null hypothesis, control of con-
founding and ascertainment bias, quantification of
uncertainty

Ideally external (i.e., performed with “new” data); for-
mal tests of significance against null hypotheses

Slow progress in sharing of primary data to allow oth-
ers to check or extend results

Explicit features, clear number of free parameters and
degrees of freedom

Less flexible, more explicit (interpretable) models,
which are more easily checked for equity if relevant
data are available




““““ Machine learning: feature representation learning

- Feature representation learning - the most impressive and
distinguishing aspect of machine learning - is its automated

ability to search and extract arbitrary, complex, task-

oriented features from data
 Features are algorithmically engineered from data during a
training phase in order to uncover data transformations that are

correct for the learning task
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||“““ Machine learning: feature representation learning/2

« Optimality is measured by means of an “objective function”
quantifying how well the AI model is performing the task at hand

« AI models can search through potentially billions of

nonlinear covariate transformations to reduce a large
number of variables to a smaller set of task-adapted
features

 AI algorithms largely remove the need for analysts to

prespecify features for prediction or manually curate
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““““ Machine learning: feature representation learning/3

 The trained AI models can engineer data-adaptive features
that are beyond the scope of features that humans can

engineer

« Such features can be hard to interpret and lack common
sense in the use of background knowledge and qualitative
checks that statisticians bring to bear Iin deciding on a
feature set to use in a model

« Al models are often unable to trace the evidence line from
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data to features, making auditability and verification challenging




||“““ Machine learning spectrum: a continuum of models

« We can imagine an algorithm as existing along a continuum
between fully human-guided vs fully machine-guided data

analysis

« To understand the degree to which an algorithm can said to be of
machine learning requires understanding how much of its
assumptions (structure or parameters) were predetermined by
humans

« The trade-off between human specification of properties vs learning
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““““ Machine learning spectrum: a continuum of models/2

Figure. The Axes of Machine Learning and Big Data
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““““ Machine learning spectrum: a continuum of models/3

- When human effort was used to define properties, it would
place low on the machine learning spectrum (#19)

 High on the machine learning spectrum are deep learning

models, stunningly complex networks of artificial neurons

designed to create accurate models directly from raw data (#4)
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||“““ Machine learning spectrum: a continuum of models/5

 The flexibility offered by the high end of the spectrum requires
vast amounts of computational resources must be used to

develop and deploy these algorithms

« While algorithms high on the spectrum are often very flexible, they
are often uninterpretable and function mostly as "“black
boxes”

« In contrast, algorithms lower on the spectrum often produce

outputs that are easier for humans to understand and interpret
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““““ Inference—-Prediction: a second continuum of models
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Statistics and machine learning models can be posed on a second
continuum, based on the main motivation of the analysis,
which can be doing inference or prediction at the extremes
The inferential regime prioritizes statements about the
relevance of each individual input variable; the predictive
regime prioritizes the relevance of the output of the model for
precise forecasting

Machine learning is especially well suited to, and largely

designed for, large-scale prediction tasks



||“““ Inference-Prediction: a continuum of models/2

- Inferring new scientific insight is often about answering: which
input variable within a given dataset is an important

contributor to the outcome? The investigator is interested in

understanding the way in which an outcome is affected by a
change in the input variables

 Predictive modeling describes what ‘does’ happen, but does
not equally well address the question of ‘how’ and may be
less apt for the question of ‘why’
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““““ Inference-Prediction: a continuum of models/3
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Figure 1. The Trade-Off between Model Transparency, Which Allows Scientific Understanding, and
Theoretical Model Capacity, Which Affords Sophisticated Predictions. Neuroscience and biomedicine have
had a long-dominating focus on scientific insight by using simple and thus transparent models. Such approaches are well
suited to work towards the goal of inference regarding mechanistic understanding. This goal is epistemologically distinct
from, and sometimes practically incompatible with, maximizing predictive power. The pragmatic goal of optimizing
predictive accuracy can exploit large datasets even at the cost of opting for black box models that cannot easily be
interrogated. In practice, the actual ratio between transparency and predictability depends on the specific analytical tool
being used and the particular dataset at hand. Abbreviations: GLM, generalized linear models; LASSO, least absolute
shrinkage and selection operator: a recently introduced constrained regression for high-dimensional data analysis, which
is a special instance of GLM.
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Challenges of machine learning
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 Quantity of input data:

« Machine learning algorithms are highly “data hungry,” often requiring
millions of observations to reach acceptable performance levels

« It is often difficult to know the optimal sample size for a particular
prediction-oriented clinical research program beforehand; reasons include
the unknown complexity of the aspired prediction function, the
amount of relevant input variables, and noise in the data



Challenges of machine learning/2
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« Quality of input data:

Input data should be unambiguously defined and measured

In noisy data, advanced pattern-learning algorithms struggle to identify
reproducible signatures among the measured variables: the more complex
the predictive model, the higher its susceptibility to random variation
Biases in data collection can substantially affect both performance
and generalizability; private companies spend resources to amass high-
quality, unbiased data to feed their algorithms, and existing data in
electronic health records or claims databases need careful curation
and processing before they are usable
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Performance evaluation:

Choosing a measure that is appropriate for the context (e.g..area
under the ROC curve, specificity, sensitivity) is vitally important, since
accuracy in one of these measures may not translate to accuracy in another
and may not relate to a clinically meaningful measure of performance
or safety

Prediction performance needs to be better than what can be achieved
using existing clinical methods for diagnosis and monitoring
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Challenges of machine learning/4

- Overfitting and unstable estimates:

« Algorithms might “overfit” predictions to spurious correlations in data

« Multicollinear, correlated predictors could produce unstable estimates

« Either possibility can lead to overly optimistic estimates of model
accuracy and exaggerated claims about real-world performance

« Reproducibility and internal validation: overinterpretation?

- The use of regularization and controlled stochastic optimization of
model parameters during training can help prevent overfitting but
also means that algorithms have poorly defined notions of statistical
degrees of freedom and the number of free parameters

« Cross-validation and held-out samples are provided to mimic true out-of-
sample performance, with the trade-off that the amount of data available
for discovery is reduced
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Challenges of machine learning/5

« Generalizability and independent validation:

overinterpretation?

« Overfitting and unstable estimates must be addressed by testing
models on truly independent validation data sets, from different
populations or periods that played no role in model development

« Problems in the model-fitting stage, whatever their cause, will show
up as poor performance in the validation stage

« Generalizability to different groups of individuals and different
ethnicities that did not contribute to model building is important per se



““““ Challenges of machine learning/6

« Causality in observational studies:

« The usual common-sense caveats about confusing correlation with
causation apply

« They become even more important as researchers begin including
millions of variables in statistical models

« Successful predictive models, clinical outcomes and ethics:

 Predictive successes can result in better patient management and
clinical outcomes as far as effective interventions are available (e.g.,
Alzheimer’s disease)

- The potential for false positive results is increased under machine
learning approaches unless rigorous procedures to assess the
reproducibility of findings are incorporated

 New reporting guidelines and recommendations for artificial
intelligence in medical science have been established to ensure
greater trust and generalizability of conclusions
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““““ Challenges of machine learning/7

- Optimal reporting of information: large scale clinical trials

Introduction

Explain the intended use of the Al RESEARCH METHODS AND REPORTING

intervention in the context of the

PIRIT-Al i L . P
Description of research question and justification for undertaking the Extensiorfa ® clinical pathway, including its purpose
Background and 6a trial, including summary of relevant studies (published and and its intended users (e.g. healthcare
rationale unpublished) examining benefits and harms for each intervention professionals, patients, public). o . , , , . ,
SPRITAI Ga () Descrbe any pre-exsting evidence for i orenaccess - Guidelines for clinical trial protocols for interventions involving
Extension the Al intervention.
_ % EOemTon (o e M osionpies  artificial intelligence: the SPIRIT-AI Extension
Objectives 7 Specific objectives or hypotheses
Description of trial design including type of trial (eg, parallel group, 0 1Dvp . 23456 7 . . 1,23458
Trial design 8 crossover, factorial, single group), allocation ratio, and framework Samantha Cruz R\vera, ** Xiaoxuan UU, 22 An-Wen Chan, AIHST&\TKDGHH\S(OH, YYYYY
(eg, superiority. equivalence, non-inferiority, exploratory) Melanie | Calvert,***'*** On behalfof the SPRIT-AI and CONSORT-Al Working Group
Methods: Participants, interventions, and outcomes
o Description of study settings (eg, community clinic, academic hospital) SPIRIT-AI 9 Describe the onsite and offsite
Z Study setting 9 and list of countries where data will be collected. Reference to where list ; requirements needed to integrate the Al
| : . Extension ) P A >
= of study sites can be obtained intervention into the trial setting.
= Inclusi d exclusi iteria f ticipants. If anolicable. eligibilit SPIRIT-Al 10 (i) State the inclusion and exclusion
L~ Eligibility nelusion and exclusion criteria for participants. # appiicable, €gIbIIY - ¢|ahoration criteria at the level of participants.
a o 10 criteria for study centres and individuals who will perform the - - - -
i criteria interventions (eg, surgeons, psychotherapists) SPIRIT-Al 10 (i)  State the inclusion and exclusion
% i i Extension criteria at the level of the input data.
= SPIRIT-Al 11a (i)  State which version of the Al algorithm
« Extension will be used.
- . ... Specify the procedure for acquiring
8 E;‘s:};ﬁ‘nna (i) and selecting the input data for the Al
(=] intervention.
2 - -
= SPIRIT-AI 11a (ii) Speafvthe procedgre for assessing and
o Extension handling poor quality or unavailable
-4 input data.
; 11a Interventions for each group with sufficient detail to allow replication, Specify whether there is human-Al inter-
= including how and when they will be administered SPIRIT-Al 11a (iv) action in the handling of the input data,
=) Extension and what level of expertise is required
for users.
Interventions SPIRIT-Al 11a (v)  Specify the output of the
Extension Al intervention.

Explain the procedure for how the Al
SPIRIT-Al 11a (vi) intervention’s output will contribute to
Extension decision-making or other elements of
clinical practice.
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Study design

v

Train,
validate

Optimization and
model selection

Test

e}
Z
<
=
b=
a
=)
)
)
1)
=
Q
53}
(a}
=
Z
-4
=
2,
4
-

Fig.11.

A4

Y

Performance
evaluation

End-to-end pipeline
replication

A schematic representation of the six components of a clinical Al study.

Part 1

Part 2

Part 3

Part 4

Part 5

Part 6

- Optimal reporting of information

Published in final edited form as:
Nat Med. 2020 September ; 26(9): 1320-1324. doi:10.1038/541591-020-1041-y.

Minimum information about clinical artificial intelligence
modeling: the MI-CLAIM checklist
Beau Norgeot', Giorgio Quer?, Brett K. Beaulieu-Jones?3, Ali Torkamani?, Raquel Dias?,

Milena Gianfrancesco?, Rima Arnaout’, Isaac S. Kohane3, Suchi Saria®6, Eric Topol?, Ziad
Obermeyer’, Bin Yu8, Atul J. Butte!™=
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« Much of the skills of a trained statistician/epidemiologist
involve factors that cannot be captured by data-driven

artificial intelligence algorithms

n

 Bringing these skills within a “human-in-the-loop
development (in which artificial intelligence supports and assists
expert human judgment) will highlight gaps to be addressed

« Human experts should be wuseful in carefully specifying

objective functions for training and evaluation and exploring
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the consequences of the applications of machine learning




““““ General conclusions/2

« As more control is ceded to algorithms, it is important to note that
these new algorithmic decision-making tools come with no

guarantees of fairness, equitability, or even veracity

« Even with the best machine learning algorithms the maxim of
"garbage in, garbage out" remains true

« Whether an algorithm is high/low on the machine learning
spectrum, best analytic practices must be used to ensure that the

end result is robust and valid
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““““ General conclusions/3

- The checking of artificial intelligence-supported findings is
particularly important in the emerging field of generative

artificial intelligence through self-supervised learning, such

as large language models and medical science chatbots that may
be used for medical note taking in electronic health records

« Researchers should find that delicate balance between wishing to
learn as much as possible from data while ensuring that data-

driven conclusions are accurate, robust, and reproducible
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““““ General conclusions/4

« Although intellectual property rights for commercial artificial
intelligence products may exist, practices that medical scientists

should pay careful attention to in planning machine learning

studies include releasing all code and providing clear
statements on model fitting and held-out data used for
reporting of accuracy so as to facilitate external assessment

of the reproducibility of findings
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