EHzürich

CPO – Regione Piemonte

L'intelligenza artificiale al servizio della salute: aspetti bioetici

Alessandro Blasimme, PhD

DHEST Department of Health Sciences and Technology

Outline

- 1. From bodies to data
- 2. From doctors to (black-box) algorithms
- 3. Conclusions: towards responsible clinical use of AI

ETH zürich

Precision Medicine **Initiative**®

100111101100101010110101111001101

Department of Health Sciences and Technology

100,000 genomes

70,000 patients and family members

21 Petabytes of data. 1 Petabyte of music would take 2,000 years to play on an MP3 player.

ETH zürich

IBM Watson Health AI gets access to full health data of 61m Italians

Detailed medical records of 61 million Italian citizens to be given to IBM for its "cognitive computing" system Watson

Posted on May 22, 2017 by Glyn Moody

EHzürich

How care.data works

Medical records

Electronic health records

EHzürich

OPEN a ACCESS Freely available online

Review

Digital Epidemiology

Marcel Salathé^{1,2*}, Linus Bengtsson³, Todd J. Bodnar^{1,2}, Devon D. Brewer⁴, John S. Brownstein⁵, Caroline Buckee⁶, Ellsworth M. Campbell^{1,2}, Ciro Cattuto⁷, Shashank Khandelwal^{1,2}, Patricia L. Mabry⁸, Alessandro Vespignani⁹

Center for Infectious Disease Dynamics, Penn State University, University Park, Pennsylvania, United States of America, 2 Department of Biology, Penn State University, University Park, Pennsylvania, United States of America, 3 Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden, 4 Interdisciplinary Scientific Research, Seattle, Washington, United States of America, 5 Harvard Medical School and Children's Hospital Informatics Program, Boston, Massachusetts, United States of America, 6 Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America, 7 Institute for Scientific Interchange (ISI) Foundation, Torino, Italy, 8 Office of Behavioral and Social Sciences Research, NIH, Bethesda, Maryland, United States of America, 9 College of Computer and Information Sciences and Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America

Abstract: Mobile, social, real-time: the ongoing revolution in the way people communicate has given rise to a new kind of epidemiology. Digital data sources, when harnessed appropriately, can provide local and timely information about disease and health dynamics in populations around the world. The rapid, unprecedented increase in the availability of relevant data from various digital sources creates considerable technical and computational challenges.

PLOS COMPUTATIONAL BIOLOGY

ETHzürich

npj | Digital Medicine

www.nature.com/npjdigitalmed

PERSPECTIVE OPEN Data mining for health: staking out the ethical territory of digital phenotyping

Nicole Martinez-Martin ¹/₀, Thomas R. Insel², Paul Dagum², Henry T. Greely¹ and Mildred K. Cho¹

Review article: Biomedical intellegence | Published 16 January 2018 | doi:10.4414/smw.2018.14571 Cite this as: Swiss Med Wkly. 2018;148:w14571

Digital health: meeting the ethical and policy challenges

Vayena Effy^a, Haeusermann Tobias^b, Adjekum Afua^a, Blasimme Alessandro^a

^a Health Ethics and Policy Lab, Department of Health Sciences and Technology (D-HEST), ETH Zurich, Switzerland
^b Department of Sociology, University of Cambridge, UK

The Ethics of AI in Biomedical Research, Patient Care and Public Health

Oxford Handbook of Ethics of Artificial Intelligence, Forthcoming

25 Pages • Posted: 17 May 2019

Alessandro Blasimme ETH Zurich

Effy Vayena ETH Zurich

https://doi.org/10.2139/ssrn.3368756

DHEST Department of Health Sciences and Technology

AMA Journal of Ethics®

PERSPECTIVE

Machine learning in medicine: Addressing ethical challenges

Effy Vayena^{1*}, Alessandro Blasimme¹, I. Glenn Cohen²

1 Health Ethics and Policy Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland, 2 Harvard Law School, Cambridge, Massachusetts, United States of America

N Engl J Med. 2018 March 15; 378(11): 981-983. doi:10.1056/NEJMp1714229.

Implementing Machine Learning in Health Care — Addressing Ethical Challenges

Danton S. Char, M.D., Nigam H. Shah, M.B., B.S., Ph.D., and David Magnus, Ph.D.

FEBRUARY 2019

Artificial Intelligence in Health Care

In health care, artificial intelligence (AI) can help manage and analyze data, make decisions, and conduct conversations, so it is destined to drastically change clinicians' roles and everyday practices. Adaptability to change in diagnostics, therapeutics, and practices of maintaining patients' safety and privacy will be key. This issue also explores some of the most ethically complex questions about AI's implementation, uses, and limitations in health care.

> Volume 21, Number 2: E119-197 Full Issue PDF

The rise of digital health: ethical issues

- Data ethics
- Informed consent
- Explainability
- Patient-doctor relation
- Trust
- Burden of care
- Sustainability
- Medicalization
- Privacy
- Data protection
- Discrimination
- Evidence and validation
- Regulatory standards
- Liability

The social trading of personal data

- Under which conditions are personal data made available?
- What forms of individual and collective control exist?
- Are appropriate safeguards in place?
- Who benefits the most?
- How are decisions being taken?

The social trading of personal data: available solutions

Informed consent

- Autonomous authorization to use data: agree to specific conditions of exposure
- Only limited amounts of control over the production, collection, use, and circulation of health data.
- Not a sufficient condition to ensure protection against privacy-related harms: e.g. discrimination, stigmatization, unfairness

ced the impending award of patent. The firm's research on sease, which used data from sevcustomers, had led to a patent on es that contribute to risk for the ight be used to predict its course. ki, co-founder of the company, w, California, nt would help n of academic

FOR DATA, INFORMED CONSENT HAS BECOME A SOURCE OF CONFUSION. SOMETHING HAS TO CHANGE.

BY ERIKA CHECK HAYDEN

The American Journal of the Medical Sciences

Volume 342, Issue 4, October 2011, Pages 267-272

Symposium Article

Is Informed Consent Broken?

Gail E. Henderson PhD⊠ ペ

Renovating consent

- Info - control + data sharing	Midway		+ info +control - data sharing
	Overseen	Choice-based	
No consent Presumed consent (Gill 2004)	Broad consent 2 = blanket consent + safety + withdrawal + access review (Hansson et	Authorization model (Caulfield, Upshur, and Daar 2003)	Informed consent (Faden and Beauchamp 1986; Manson and O'Neill 2007)
Presumed consent with opt- out (Wendler and Emanuel 2002)	al. 2006) Broad consent + ongoing oversight and communication (Grady et al.	Tiered consent (McGuire and Beskow 2010; Mello and Wolf 2010; Bunnik, Janssens, and Schermer 2013)	Consent for de-identified samples and data
Blanket consent (UNESCO 2001) (Tomlinson 2013)	2015)	Electronic informed	
Open consent (Lunshof et al. 2008)	Broad consent + governance (O'Doherty et al. 2011)	Consent (FDA and DHHS 2016; Sage Bionetworks 2017)	
Portable legal consent (Hayden 2012; Vayena, Mastroianni, and Kahn 2013)	Broad consent + trusted governance system (Koenig 2014; Garrett, Dohan, and	Dynamic consent (Kaye et al. 2012; Kaye et al. 2015; Budin-Ljøsne et al. 2017)	
Broad consent 1 = blanket + limitations (as defined in Grady et al. 2015)	Koenig 2015)		

Data protection

- Pseudonymization
- Anonymization
- Encryption

The more data circulate, the harder it is to protect it.

ETHzürich

Identifying Personal Genomes by Surname Inference

Melissa Gymrek,^{1,2,3,4} Amy L. McGuire,⁵ David Golan,⁶ Eran Halperin,^{7,8,9} Yaniv Erlich¹*

Sharing sequencing data sets without identifiers has become a common practice in genomics. Here, we report that surnames can be recovered from personal genomes by profiling short tandem repeats on the Y chromosome (Y-STRs) and querying recreational genetic genealogy databases. We show that a combination of a surname with other types of metadata, such as age and state, can be used to triangulate the identity of the target. A key feature of this technique is that it entirely relies on free, publicly accessible Internet resources. We quantitatively analyze the probability of identification for U.S. males. We further demonstrate the feasibility of this technique by tracing back with high probability the identities of multiple participants in public sequencing projects.

SCIENCE VOL 339 18 JANUARY 2013

Identification of individuals by trait prediction using whole-genome sequencing data

Christoph Lippert^{a,1}, Riccardo Sabatini^a, M. Cyrus Maher^a, Eun Yong Kang^a, Seunghak Lee^a, Okan Arikan^a, Alena Harley^a, Axel Bernal^a, Peter Garst^a, Victor Lavrenko^a, Ken Yocum^a, Theodore Wong^a, Mingfu Zhu^a, Wen-Yun Yang^a, Chris Chang^a, Tim Lu^b, Charlie W. H. Lee^b, Barry Hicks^a, Smriti Ramakrishnan^a, Haibao Tang^a, Chao Xie^c, Jason Piper^c, Suzanne Brewerton^c, Yaron Turpaz^{b,c}, Amalio Telenti^b, Rhonda K. Roby^{b,d,2}, Franz J. Och^a, and J. Craig Venter^{b,d,1}

10166-10171 | PNAS | September 19, 2017 | vol. 114 | no. 38

Fig. 6. Overview of the experimental approach. A DNA sample and a vari-

New forms of governance

Inclusive governance of research data:

Publicly sponsored research

"TAILORED-TO-YOU"

public engagement and the political legitimation of precision medicine

https://muse.jhu.edu/article/648044/pdf

ALESSANDRO BLASIMME AND EFFY VAYENA

Blasimme and Vayena BMC Medical Ethics (2016) 17:67 DOI 10.1186/s12910-016-0149-6

BMC Medical Ethics

DEBATE

Becoming partners, retaining autonomy: ethical considerations on the development of precision medicine

Alessandro Blasimme^{1,2*} and Effy Vayena¹

New forms of governance

- Inclusive governance of research data:
 - Publicly sponsored research
 - Data cooperatives

Philos. Technol. (2018) 31:473–479 https://doi.org/10.1007/s13347-018-0320-8

COMMENTARY

Democratizing Health Research Through Data Cooperatives

Alessandro Blasimme¹ · Effy Vayena¹ · Ernst Hafen²

Outline

- 1. From bodies to data
- 2. From doctors to (black-box) algorithms
- 3. Conclusions: towards responsible clinical use of AI

Al in society

For artificial intelligence to thrive, it must explain itself

If it cannot, who will trust it?

Print edition | Science and technology

Feb 15th 2018

SCIENCE ROBOTICS | FOCUS

ROBOTS AND SOCIETY

Transparent, explainable, and accountable AI for robotics

Sandra Wachter,¹* Brent Mittelstadt,^{2,3,1} Luciano Floridi^{1,2}

To create fair and accountable AI and robotics, we need precise regulation and better methods to certify, explain, and audit inscrutable systems.

International Data Privacy Law, 2017, Vol. 7, No. 4

Meaningful information and the right to explanation

Andrew D. Selbst* and Julia Powles**

SCIENCE TRANSLATIONAL MEDICINE | FOCUS

BIG DATA

Big data and black-box medical algorithms

W. Nicholson Price^{1,2,3}

New machine-learning techniques entering medicine present challenges in validation, regulation, and integration into practice.

Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability

BY ALEX JOHN LONDON

A right to explanation in the GDPR?

- Recital 71
- Articles 13, 14, 15
- Data subjects are entitled to receive meaningful information about the logic involved, the significance and the envisaged consequences of solely automated individual decisionmaking and profiling.

Machine Learning in Medicine:

Opening the New Data Protection Black Box

Agata Ferretti, Manuel Schneider and Alessandro Blasimme*

DOI: 10.21552/edpl/2018/3/10

What does opacity even mean?

Machine Learning in Medicine:

Opening the New Data Protection Black Box

Agata Ferretti, Manuel Schneider and Alessandro Blasimme*

• OPACITY 1:

- It is impossible to access the rules the algorithm has learnt: not programmed.
- It is impossible to make sense of the rules the algorithm applies: too complex
- OPACITY 2:
 - It is impossible to understand why AI makes this or that decision/prediction: why are input and output are associated?

Why must AI be explainable?

- Clinical interpretability:
 - Why did the AI do that?
 - Why did the AI succeed?
 - Why did it fail?
- To correct Al's mistake
- To ensure AI can be trustworthy

Shedding light on darkness

The heatmap provides visual depiction of the relevance of a feature in the decision making. In an image classifier, it represents the contribution of the pixels towards a class.

Wipro.com

EHzürich

Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning

nature biomedical engineering

https://doi.org/10.1038/s41551-018-0195-0

Actual: 57.6 years Predicted: 59.1 years

Actual: female Predicted: female

Gender

Actual: non-smoker Predicted: non-smoker

Actual: non-diabetic Predicted: 6.7%

Actual: 26.3 kg m⁻² Predicted: 24.1 kg m⁻²

Fig. 2 | Attention maps for a single retinal fundus image. The top left image is a sample retinal image in colour from the UK Biobank dataset. The remaining images show the same retinal image, but in black and white. The soft attention heat map (Methods) for each prediction is overlaid in green, indicating the areas of the heat map that the neural-network model is using to make the prediction for the image. For a quantitative analysis of what was highlighted, see Table 6. HbA1c values are not available for UK Biobank patients, so the self-reported diabetes status is shown instead.

End zürich Opening the Black Box of Artificial Intelligence for Clinical Decision Support: A Study Predicting Stroke Outcome

Esra Zihni^{1*}, Vince Istvan Madai^{1*}, Michelle Livne¹, Ivana Galinovic², Ahmed A. Khalil², Jochen B. Fiebach², Dietmar Frey¹

Elastic net, Catboost and multilayer perceptron (MLP). For logistic regression techniques the results are given in weights, for Catboost in Shap(ley) values and for MLP in deep Taylor values that were normalized to the range [0,1]. The bar heights represent means and error bars represent standard deviation over samples (shuffles).

Is correlation without explanation acceptable?

- Can we accept to perform a medical act we don't know how to explain?
- Explanatory reasons vs Justificatory reasons
- AI will never provide explanatory reasons in mechanistic terms: only the lab can do that.
- Mechanisms are neither necessary nor sufficient as justificatory reasons for a medical act.

Is correlation without explanation useful?

Discovery of causes (causal inference)

EHzürich

Is correlation without explanation useful?

Gregor Mendel, F1 dihybrid; © CC AndreaLaurel

Generation of new hypotheses

https://blogs.biomedcentral.com/bmcseriesblog/2015/03/08/celebrating-150-years-mendelian-genetics/ A. Blasimme | 05.12.19 | 32

ETHzürich

Does correlation without *explanation* constitute evidence?

Probabilistic evidence

DHEST Department of Health Sciences and Technology

A. Blasimme | 05.12.19 | 33

Evidence and explanation in medicine

 Multiple sources (and formats) of medical evidence: probabilistic + mechanistic.

Medicine relies on evidence integration

(Russo & Williamson 2007)

DHEST Department of Health Sciences and Technology

Protecting evidence integration

- Al should not get in the way of evidence integration:
 - Disproportionate R&D funding (undermining basic research)
 - Economic incentives to clinical use
 - Blind faith / trust
 - Clinical dependency
 - Deskilling

What kind of explanations do we need?

- As patients...
- As health care professionals...
- As scientists...

Outline

- 1. From bodies to data
- 2. From doctors to (black-box) algorithms
- 3. Conclusions: towards responsible clinical use of AI

Three maxims for a technological world

- 1. That technologies be given a scale and structure of the sort that would be immediately intelligible to nonexperts.
- 2. That technologies be built with a high degree of flexibility and mutability.
- 3. That technologies be judged according to the degree of dependence they tend to foster, those creating the greater dependency being held inferior.

L. Winner, 1977, p. 326-7

Grazie per l'attenzione!

alessandro.blasimme@hest.ethz.ch

Twitter: a_blasimme

