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Deep learning in histopathology: the path

to the clinic
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Box 1| Definitions

Deep learning

A machine learning approach in which algorithms are trained
for a specific task (or set of tasks) by exposing a multilayered
artificial neural network to (typically a large amount of) training
data, without the need for handcrafted engineering of features to
be extracted from the data. The resulting algorithm has learned a
hierarchical representation of the data that is subsequently used
for tasks such as classification, detection or segmentation. The
term deep refers to artificial neural networks built using many
layers, in other words a deep neural network.

Digital pathology
The digitization of the traditional diagnostic process of analyzing
cells and tissue with a microscope via whole-slide scanners and
computer screens.

Computational pathology
The computational analysis of digital images obtained through
scanning slides of cells and tissues.

Radiomics/pathomics

Techniques to extract a (usually very large) set of features from
radiological or histopathological digital images, respectively, using
computational algorithms of data analysis. These features are
successively used to feed (usually supervised) prediction models
targeting clinically relevant end points, such as prognosis.

End-to-end training

In the context of machine learning models, possibly consisting of
a pipeline with multiple steps, end-to-end training refers to the
procedure of learning the optimal value of all parameters of a
model simultaneously rather than sequentially (that is, one step
at a time).

Whole-slide images
Digital images obtained by digitizing complete histopathological
glass slides using a high-resolution scanner.

Convolutional neural networks

Deep learning approach consisting of a series of convolutional
layers to process data (usually bi-dimensional) from input to
output. Each layer implements the convolution operation between
the input data and a set of filters (that is, small matrices), whose
numerical values are automatically learned in an end-to-end
training fashion.

Graphics processing units

Microprocessor specifically designed to process many data
samples simultaneously, such as parts of digital images or features
extracted from images.

Image segmentation

The operation of decomposing the semantic content of an image
into multiple segments, where each segment contains pixels
belonging to the same semantic category (for example, the tumor
region).

U-Net models

Deep learning models based on two convolutional neural networks,
one that encodes the input image into a set of features, and one
that decodes those features to produce a segmentation output. The
name, introduced in 2015 by Ronneberger et al.'**, indicates the U
shape that the two convolutional neural networks form, where the
encoder and decoder are connected via skip connections.

Data augmentation

The operation of artificially modifying some properties of input
data (for example, image contrast, orientation, color and so on)
with the aim of feeding a computational model with multiple
variations of the same piece of data.

Model regularization

In machine learning, indicates the process of constraining a
model’s parameters to small values, discouraging complex models,
therefore reducing the risk of overfitting the training data.
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ImageNet Large Scale * Since ~2010

Visual Recognition
Competition (ILSVRC)

» Efficacy of CNN (convolutional neural networks)

e Breast cancer metastases in
sentinel lymph nodes

CAMELYON challenge

e Dataset of 1399 manually
annotated WSI
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The latest from Google Research

Applying Deep Learning to Metastatic Breast Cancer

Detection
Friday, October 12,2018
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Colorectal carcinoma

Colorectal carcinoma (CRC) is
the second most deadly and
the third most common cancer
(Globocan 2020)

Colorectal cancer screening
enables prompt detection of
early CRC or preinvasive
lesions, but represents a
significant workload for both
endoscopy and pathology units

Number of deaths in 2020, both sexes, all ages

Lung
1796 144 (18%)

Other cancers
3557 464 (35.7%)

Colorectum
935 173 (9.4%)

Liver

830 180 (8.3%)
Stomach
768 793 (7.7%)

Oesophagus Breast
544 076 (5.5%) 684 996 (6.9%)

Prostate
375304 (3.8%)

Pancreas
466 003 (4.7%)

Total: 9 958 133 deaths



Digital pathology for colorectal carcinoma
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Adenoma classification

Table 1: Our dataset: The distribution of colorectal polyp
types in crop images used in this work

Deep Learning for Classification of Colorectal Polyps on
Whole-slide Images

Colorectal polyp type Acronym  Number of image crops

Hyperplastic polyp HP 405

Sessile serrated polyp SSp 612

Bruno Korbar'?, Andrea M. Olofson?, Allen P. Miraflor®, Catherine M. Nicka®, Matthew A. Suriawinata®, Lorenzo Torresani?, Arief A. Suriawinata?, Traditional serrated adenoma TSA 258
Saeed Hassanpour'>* Tubular adenoma TA 360

Tubulovillous/villous adenoma TVA/V 202

Normal S 237

J Pathol Inform 2017, 1:30 Total - 2074

Table 4: Whole-slide classification results: Results of our final model for classification of colorectal polyps on 239
whole-slide images in our test set

HP SSP TSA TA

TVAN Normal Total

(n=317) (%)

(n=39) (%)

(n=38) (%)

(n=39) (%)

(n=38) (%)

(n=48) (%)

(1=239) (%)

Accuracy  89.8 (85.3-93.3)  89.5(85.0-93.1)  94.7(91.1-97.2)  93.1(89.2-96.0)  95.8(92.5-97.9)  95.0 (91.5-97.4)  93.0 (89.0-95.9)
Precision  90.9 (86.6-94.2)  86.11(81.1-90.2)  100.0 (98.5-100)  83.3(78.0-87.8)  97.2(94.3-98.9)  80.7(75.1-85.5)  89.7 (85.2-93.2)
Recall 81.1(75.5-85.8)  81.6(76.1-86.3)  89.5(84.9-93.0)  89.7(85.2-93.3)  92.1(88.0-95.2)  95.8(92.5-98.0)  88.3 (83.6-92.1)
Flscore  85.7(80.6-89.9)  83.8(78.5-88.2)  94.4(90.8-97.0)  86.4(81.4-90.5) 94.6(90.9-97.1)  87.6(82.8-91.5)  88.8 (84.1-92.5)

HP: Hyperplastic polyp, SSP: Sessile serrated polyp, TSA: Traditional serrated adenoma, TA: Tubular adenoma, TVA/V: Tubulovillous/villous adenoma




Adenoma classification

nework [Open.

Original Investigation | Health Informatics

Evaluation of a Deep Neural Network for Automated Classification
of Colorectal Polyps on Histopathologic Slides

Jason W. Wei, BA; Arief A. Suriawinata, MD; Louis J. Vaickus, MD, PhD; Bing Ren, MD, PhD; Xiaoying Liu, MD; Mikhail Lisovsky, MD, PhD; Naofumi Tomita, MS;
Behnaz Abdollahi, PhD; Adam S. Kim, MD; Dale C. Snover, MD; John A. Baron, MD; Elizabeth L. Barry, PhD; Saeed Hassanpour, PhD

JAMA Network Open. 2020;3(4):e203398. doi:10.1001/jamanetworkopen.2020.3398

Figure 1. Data Flow Diagram for the Study

508 Slides from Dartmouth-

238 Slides from external

Hitchcock Medical Center institutions
Training set slides Training set cropped images External test set
37 Tubular 447 Tubular 95 Tubular

30 Tubulovillous or villous

397 Tubulovillous or villous

c Iteration

78 Tubulovillous or villous

111 Hyperplastic 1597 Hyperplastic 41 Hyperplastic
140 Sessile serrated 270 Sessile serrated 24 Sessile serrated
8 Normal 1137 Normal v 238 Total P .
326 Total 3848 Total analyzed and
De;ep niural compared
2[2 ::i?‘irer with local
Validation set slides Validation set patches Internal test set pathologists
5 Tubular 96 Tubular 46 Tubular
5 Tubulovillous or villous 91 Tubulovillous or villous 34 Tubulovillous or villous

5 Hyperplastic
5 Sessile serrated
5 Normal

25 Total

263 Hyperplastic
16 Sessile serrated

233 Normal

699 Total

39 Hyperplastic
38 Sessile serrated
157 Total




Adenoma classification

Table. Per-Class Comparison Between Local Pathologists and the Deep Neural Network Model in Classifying Colorectal Polyps on Internal and External Test Sets

Internal test set (n = 157) External test set (n = 238)

Local pathologists Deep neural network Local pathologists Deep neural network

Accuracy, Sensitivity, Specificity, Accuracy, Sensitivity, Specificity, Accuracy, Sensitivity, Specificity, JAccuracy, Sensitivity, Specificity,
Polyp type % % % % % % % % % % % %
TA 89.8 76.1 955 9310 89.1 94.6 735 537 972 84.5 737 91.6
TVA 94.3 88.2 95.8 95.5 97.1 95.1 81.5 100 1711 89.5 97.6 87.8
HP 89.8 76.9 94.1 92.4 82.1 95.8 91.6 80.8 96.8 85.3 60.3 97.5
SSA 917 81.6 95.0 9310 785 975 933 792 94.8 88.7 792 89.7
Mean 91.4 80.7 95 1 93.5 86.8 957 86.6 78.4 91.6 87.0 717 91.6

[A] Local pathologists Model

Limitations:

* Lack of dysplasia grading

* Lack of normal tissue

* Lower performance during external testing

Ground truth diagnoses
Ground truth diagnoses

TA TVA HP SSA TA TVA HP SSA
Predicted diagnoses Predicted diagnoses

JAMA Network Open. 2020;3(4):e203398. doi:10.1001/jamanetworkopen.2020.3398
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Use Cases
14 pilot test-beds in 3 areas:

Neurological diseases
* Migraine and Seizures prediction
* Major Depression
* Dementia

5 ggﬁglgfgitructuralchangesinlumbarspine COlon Cancer diagnOSiS DeepHealth

Population model for Alzheimer's Disease
* Epileptic seizures detection
Objective fatigue assessment for multiple

sclerosis patients Colon cancer is one of the most frequent causes of death. w
Tumor detection and early cancer prediction Screening programs can enable prompt diagnosis and treatment
* Chest cancer detection of this aggressive disease, but they also lead to higher caseloads @ \
) ZL?:T::;:T:;g:s:qzszetection and costs for the already strained European healthcare services. A
DeepHealth can help streamline pathological diagnosis of colon B
Digital pathology and automated image biopsies.

annotation
‘ [ * Classification of whole-slide histological]
images of colorectal biopsy samples
CT brain perfusion maps synthesis
Deep Image annotation
Image Analysis and prediction for Urology




Dataset (WSI images)

HP |NORM | TA.HG | TA.LG | TVA.HG | TVA.LG | Total
Slides |62 |30 34 232 |44 55 457
Ry 158 [112 (145  |777  |264 245 1701
A; [em?®] [9.91]18.38 |7.94 |71.74 |60.45  |41.86 |210.29

* H&E slide acquired on the Hamamatsu Nanozoomer S210

scanner (200X)

 Manual annotation according to 6 classes:

e NORM: normal tissue

* HP: hyperplastic polyp
e TA.LG: tubular adenoma, low-grade dysplasia

* TA.HG: tubular adenoma, high-grade dyplasia

* TVA.LG: tubulo-villous adenoma, low-grade dysplasia
 TVA.HG: tubulo-villous adenoma, high-grade dysplasia

(a) NORM

(d) HP

(e) TVA.LG

(f) TVA.HG

Perlo D. et al. MICAD 2021




* CNN: ResNet-18

* Pre-training on the ImageNet classification task

* Data augmentation: one random operation between rotation,
equalization, solarization, inversion and contrast enhancing

. Balanced Accuracy across different input preprocessing

—— Grayscale
—— RGB
0.70 - - Macenko et al,

Patches normalization: relevant features are
. . . 0.60 1
not embed in color, but in image texture and \/\

signal strenght 055 -

0.50

300 400 500 600 700 80 900 1000

micron

Fig. 2. Patches classification performance.

Perlo D. et al. MICAD 2021
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Table 3. Human dysplasia diagnostic performance comparison
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Balanced Accuracy
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L

Accuracy | Sensitivity | Specificity
Hyperplastic | Our (400 wm) | 0.90 0.80 0.99
Our (600 pum) | 0.92 0.85 0.99
Pathologist [8] | 0.79 0.30 0.97
Low grade | Our (400pum) |0.76 0.73 0.78
Our (600 wm) |0.71 0.83 0.59
Pathologist [8] | 0.66 0.57 0.69
High grade |Our (400 um) |0.83 0.78 0.88
Our (600 wm) | 0.70 0.46 0.93
Pathologist [8] | 0.83 0.81 0.84

0.2

T T T T T T T T
300 400 500 600 700 800 900 1000
micron

(d)

* Achieved results are similar to those reported by
Denis B et al. (Eur J of Gastroenterol Hepatol 2009)

Perlo D. et al. MICAD 2021



Dysplasia grading

Gr. truth

(a) ¢ =600 pm, gray-scale

Table 4. WSI inferences: confusion matrices.

(b) ¢ =600 pm, RGB

Predicted Predicted
HP |[NORM| HG | LG HP |[NORM| HG | LG
HP 0.85 0 0.05 0.1 | =| HP 0.75 0.05 0 0.2
NORM| 0.12 | 0.75 | 0 | 0.12 | Z[NORM| 0 | 0.62 | 0 | 0.38
HG 0.02 0 0.63 | 0.35 t HG 0 0.02 | 0.61 | 0.37
LG 0.03 0.09 | 0.18 | 0.7 || LG 0.03 0.06 | 0.15 | 0.76

* Poor results in
distinguishing
TA versus
TVA/VA

4 N

Perlo D et al. MICAD 2021



Multi-resolution analysis

Patch scale o [um]

Type | 100 800 1500 4000 7000 8000

BA (6-class) | 0.40 045 046 041 037 038
NORM | 0.70 066 0.72 076 0.78 0.71

HP | 0.81 092 085 070 0.60 0.69

TA (HG+LG) | 0.65 066 0.65 071 076 0.70
TVA (HG+LG) | 0.64 0.67 068 0.74 084 0.76

Table 2: Preliminary experiments: overall BA for all of the six

classes (first row) and BA for each polyp type, plus normal tissue.

 Adenoma type and dysplasia

grade are best classified at

different scales

Slide
Preprocessing

Hyperplastic Binary

800 um

Classifier

I_NOt e

7000 pum

Cropping to
800 um

Adenoma Classifier

o

@D

800 pm

Dysplasia Binary Classifier

O o

Barbano CA et al. IEEE ICIP 2021



Multi-resolution analysis

HP NORM TA TVA

HG LG HG LG a 3% 0% a
I I

Sensitivity  0.86 0.79 0.60 0.50 0.78 0.52
Specificity  0.93 0.87 092 094 096 0.92 - - i -
BA 0.89 083 0.76 0.72 0.87 0.72 4 ’ ’ «
Table 3: Sensitivity, Specificity and BA per class. o 14% 21% ©
2 2

4% 14%

TA.LG
TA.LG

o HP NORM TA TVA

Baseline 800  0.92 0.66 0.66 0.67 - 1% 0% 25% 13% 14% ©
Baseline 1500 0.85 0.72 0.65 0.68 < <
Baseline 7000 0.60 078 076 0.84 F F
Multi-resolution - 089 083 081 0.87 Q- 1% 2% 4% 48% 10% 35% 9 11% 0% 7% 15%
< <
Table 4: Comparison of the class BA between the baseline and the 3 HP NORM TAHG TALG TVAHG TVALG 2 HP NORM TAHG TALG TVAHG TVALG
proposed multi-resolution approach.
(a) Baseline (b) Multi-resolution Ensemble

Limitations:
* Some entities missing (serrated adenomas, invasive adenocarcinomas,...)
e Larger dataset is warranted

e Lack of external validation
Barbano CA et al. IEEE ICIP 2021



Deep learning model for the prediction of microsatellite
instability in colorectal cancer: a diagnostic study

Rikiya Yamashita, Jin Long, Teri Longacre, Lan Peng, Gerald Berry, Brock Martin, John Higgins, Daniel L Rubin*, Jeanne Shen*
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Challenges

Combined H&E and IHC

for WSI annotation

=

*  Collect large-scale Weakly

annotated datasets ) supervised

(images and clinical LTI

annotations)

Scailing up input
to whole WSI
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